$p$-Dual frames and $p$-Riesz sequences in quasinormed spaces
نویسندگان
چکیده
منابع مشابه
$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملDual Wavelet Frames and Riesz Bases in Sobolev Spaces
This paper generalizes the mixed extension principle in L2(R) of [50] to a pair of dual Sobolev spaces H(R) and H−s(Rd). In terms of masks for φ, ψ, . . . , ψ ∈ H(R) and φ̃, ψ̃, . . . , ψ̃ ∈ H−s(Rd), simple sufficient conditions are given to ensure that (X(φ;ψ, . . . , ψ), X−s(φ̃; ψ̃, . . . , ψ̃)) forms a pair of dual wavelet frames in (Hs(Rd),H−s(Rd)), where X(φ;ψ, . . . , ψ) := {φ(· − k) : k ∈ Zd} ...
متن کاملConnection between p - frames and p - Riesz bases in locally nite SIS of Lp ( R )
Let 1 p 1 and = (1 ; : : : ; r) T be a vector-valued compactly supported L p function on R d. Deene V p (() = n P r i=1 P j2Z d d i (j) i (? j) : (d i (j)) j2Z d 2 ` p ; 1 i r o : In this paper, we consider the p-frame property of the space V p (() with being compactly supported function in L p \ L p=(p?1). Moreover, for the one-dimensional case, we show that if f i (? j) : 1 i r; j 2 Zg is a p...
متن کاملExpansion of Bessel and g-Bessel sequences to dual frames and dual g-frames
In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.
متن کاملContinuous $ k $-Frames and their Dual in Hilbert Spaces
The notion of $k$-frames was recently introduced by Gu avruc ta in Hilbert spaces to study atomic systems with respect to a bounded linear operator. A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous super positions. In this manuscript, we construct a continuous $k$-frame, so called c$k$-frame along with an atomic system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de la Unión Matemática Argentina
سال: 2020
ISSN: 1669-9637,0041-6932
DOI: 10.33044/revuma.v61n2a07